Namespaces
Variants
Views
Actions

std::mem_fn

From cppreference.com
 
 
 
Function objects
Function wrappers
function(C++11)
mem_fn(C++11)
bad_function_call(C++11)
Bind
bind(C++11)
is_bind_expression(C++11)
is_placeholder(C++11)
_1, _2, _3, ...(C++11)
Reference wrappers
reference_wrapper(C++11)
ref
cref
(C++11)
(C++11)
Operator wrappers
Negators
Deprecated binders and adaptors
unary_function(deprecated)
binary_function(deprecated)
ptr_fun(deprecated)
pointer_to_unary_function(deprecated)
pointer_to_binary_function(deprecated)
mem_fun(deprecated)
mem_fun_t
mem_fun1_t
const_mem_fun_t
const_mem_fun1_t
(deprecated)
(deprecated)
(deprecated)
(deprecated)
mem_fun_ref(deprecated)
mem_fun_ref_t
mem_fun1_ref_t
const_mem_fun_ref_t
const_mem_fun1_ref_t
(deprecated)
(deprecated)
(deprecated)
(deprecated)
binder1st
binder2nd
(deprecated)
(deprecated)
bind1st
bind2nd
(deprecated)
(deprecated)
 
Defined in header <functional>
template< class R, class T >
/*unspecified*/ mem_fn(R T::* pm);
(1) (since C++11)
template< class R, class T, class... Args >

/*unspecified*/ mem_fn(R (T::* pm)(Args...));
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) const);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) volatile);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) const volatile);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) &);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) const &);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) volatile &);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) const volatile &);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) &&);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) const &&);
template< class R, class T, class... Args >
/*unspecified*/ mem_fn(R (T::* pm)(Args...) volatile &&);
template< class R, class T, class... Args >

/*unspecified*/ mem_fn(R (T::* pm)(Args...) const volatile &&);
(2) (since C++11)
(until C++14)

Function template std::mem_fn generates wrapper objects for pointers to members, which can store, copy, and invoke a pointer to member. Both references and pointers (including smart pointers) to an object can be used when invoking a std::mem_fn.

The overloads (2) were introduced in C++11 but removed in C++14 as defect #2048

Contents

[edit] Parameters

pm - pointer to member that will be wrapped

[edit] Return value

std::mem_fn returns an call wrapper of unspecified type that has the following members:

std::mem_fn Return type

Member types

type definition
result_type the return type of pm if pm is a pointer to member function, not defined for pointer to member object
argument_type T*, possibly cv-qualified, if pm is a pointer to member function taking no arguments
first_argument_type T* if pm is a pointer to member function taking one argument
second_argument_type T1 if pm is a pointer to member function taking one argument of type T1

Member function

operator()
invokes the target on a specified object, with optional parameters
(public member function)

[edit] Exceptions

None.

[edit] Example 1

Use mem_fn to store and execute a member function and a member object:

#include <functional>
#include <iostream>
 
struct Foo {
    void display_greeting() {
        std::cout << "Hello, world.\n";
    }
    void display_number(int i) {
        std::cout << "number: " << i << '\n';
    }
    int data = 7;
};
 
int main() {
    Foo f;
 
    auto greet = std::mem_fn(&Foo::display_greeting);
    greet(f);
 
    auto print_num = std::mem_fn(&Foo::display_number);
    print_num(f, 42);
 
    auto access_data = std::mem_fn(&Foo::data);
    std::cout << "data: " << access_data(f) << '\n';
}

Output:

Hello, world.
number: 42
data: 7

[edit] Example 2

Pass a member function to std::transform to create a sequence of numbers:

#include <iostream>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
#include <algorithm>
 
int main()
{
    std::vector<std::string> words = {"This", "is", "a", "test"};
    std::vector<std::unique_ptr<std::string>> words2;
    words2.emplace_back(new std::string("another"));
    words2.emplace_back(new std::string("test"));
 
    std::vector<std::size_t> lengths;
    std::transform(words.begin(),
                   words.end(),
                   std::back_inserter(lengths),
                   std::mem_fn(&std::string::size)); // uses references to strings
    std::transform(words2.begin(),
                   words2.end(),
                   std::back_inserter(lengths),
                   std::mem_fn(&std::string::size)); // uses unique_ptr to strings
 
    std::cout << "The string lengths are ";
    for(auto n : lengths) std::cout << n << ' ';
    std::cout << '\n';
}

Output:

The string lengths are 4 2 1 4 7 4

[edit] Example 3

Demonstrates the effect of the C++14 changes to the specification of std::mem_fn

#include <iostream>
#include <functional>
 
struct X {
    int x;
 
    int&       easy()      {return x;}
    int&       get()       {return x;}
    const int& get() const {return x;}
};
 
 
int main(void)
{
    auto a = std::mem_fn        (&X::easy); // no problem at all
//  auto b = std::mem_fn<int&  >(&X::get ); // no longer works in C++14
    auto c = std::mem_fn<int&()>(&X::get ); // works with both C++11 and C++14
    auto d = [] (X& x) {return x.get();};   // another approach to overload resolution
 
    X x = {33};
    std::cout << "a() = " << a(x) << '\n';
    std::cout << "c() = " << c(x) << '\n';
    std::cout << "d() = " << d(x) << '\n';
}

Output:

a() = 33
c() = 33
d() = 33

[edit] See also

(C++11)
wraps callable object of any type with specified function call signature
(class template) [edit]
(C++11)
binds one or more arguments to a function object
(function template) [edit]