Namespaces
Variants
Views
Actions

Standard library header <memory>

From cppreference.com

This header is part of the dynamic memory management library.

Contents

[edit] Classes

Smart pointers categories
smart pointer with unique object ownership semantics
(class template) [edit]
smart pointer with shared object ownership semantics
(class template) [edit]
(C++11)
weak reference to an object managed by std::shared_ptr
(class template) [edit]
(deprecated)
smart pointer with strict object ownership semantics
(class template) [edit]
Smart pointers helper classes
provides mixed-type owner-based ordering of shared and weak pointers
(class template) [edit]
allows an object to create a shared_ptr referring to itself
(class template) [edit]
exception thrown when accessing a weak_ptr which refers to already destroyed object
(class) [edit]
default deleter for unique_ptr
(class template) [edit]
Allocators
the default allocator
(class template) [edit]
provides information about allocator types
(class template) [edit]
tag type used to select allocator-aware constructor overloads
(class) [edit]
an object of type std::allocator_arg_t used to select allocator-aware constructors
(constant) [edit]
checks if the specified type supports uses-allocator construction
(class template) [edit]
Other
lists pointer safety models
(class) [edit]
provides information about pointer-like types
(class template) [edit]
hash support for std::shared_ptr
(class template specialization) [edit]
hash support for std::unique_ptr
(class template specialization) [edit]
Forward declaration
Defined in header <functional>
(C++11)
hash function object
(class template) [edit]

Constants

an object of type std::allocator_arg_t used to select allocator-aware constructors
(constant) [edit]

[edit] Functions

Uninitialized storage
copies a range of objects to an uninitialized area of memory
(function template) [edit]
copies a number of objects to an uninitialized area of memory
(function template) [edit]
copies an object to an uninitialized area of memory
(function template) [edit]
copies an object to an uninitialized area of memory
(function template) [edit]
an iterator that allows standard algorithms to store results in uninitialized memory
(class template) [edit]
obtains uninitialized storage
(function template) [edit]
frees uninitialized storage
(function template) [edit]
Garbage collector support
declares that an object can not be recycled
(function) [edit]
declares that an object can be recycled
(function template) [edit]
declares that a memory area does not contain traceable pointers
(function) [edit]
cancels the effect of std::declare_no_pointers
(function) [edit]
returns the current pointer safety model
(function) [edit]
Miscellaneous
(C++11)
obtains actual address of an object, even if the & operator is overloaded
(function template) [edit]
(C++11)
aligns a pointer in a buffer
(function) [edit]
Smart pointer non-member operations
creates a shared pointer that manages a new object
(function template) [edit]
creates a shared pointer that manages a new object allocated using an allocator
(function template) [edit]
applies static_cast, dynamic_cast or const_cast to the type of the managed object
(function template) [edit]
returns the deleter of specified type, if owned
(function template) [edit]
compares with another shared_ptr or with nullptr
(function template) [edit]
outputs the value of the managed pointer to an output stream
(function template) [edit]
specializes the std::swap algorithm
(function template) [edit]
specializes atomic operations
(function template) [edit]
compares to another unique_ptr or with nullptr
(function template) [edit]
specializes the std::swap algorithm
(function template) [edit]
specializes the std::swap algorithm
(function template) [edit]
Allocator non-member operations
compares two allocator instances
(public member function of std::allocator) [edit]
compares two scoped_allocator_adaptor instances
(public member function of std::scoped_allocator_adaptor) [edit]

[edit] Synopsis

namespace std {
    // pointer traits
    template <class Ptr> struct pointer_traits;
    template <class T> struct pointer_traits<T*>;
 
    // pointer safety
    enum class pointer_safety { relaxed, preferred, strict };
    void declare_reachable(void *p);
    template <class T> T *undeclare_reachable(T *p);
    void declare_no_pointers(char *p, size_t n);
    void undeclare_no_pointers(char *p, size_t n);
    pointer_safety get_pointer_safety() noexcept;
 
    // pointer alignment function
    void *align(std::size_t alignment, std::size_t size,
                void *&ptr, std::size_t& space);
 
    // allocator argument tag
    struct allocator_arg_t { };
    constexpr allocator_arg_t allocator_arg = allocator_arg_t();
 
    // uses_allocator
    template <class T, class Alloc> struct uses_allocator;
 
    // allocator traits
    template <class Alloc> struct allocator_traits;
 
    // the default allocator:
    template <class T> class allocator;
    template <> class allocator<void>;
    template <class T, class U>
        bool operator==(const allocator<T>&, const allocator<U>&) noexcept;
    template <class T, class U>
        bool operator!=(const allocator<T>&, const allocator<U>&) noexcept;
 
    // raw storage iterator:
    template <class OutputIterator, class T> class raw_storage_iterator;
 
    // temporary buffers:
    template <class T>
        pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n) noexcept;
    template <class T>
        void return_temporary_buffer(T* p);
 
    // specialized algorithms:
    template <class T> T* addressof(T& r) noexcept;
    template <class InputIterator, class ForwardIterator>
        ForwardIterator uninitialized_copy(InputIterator first, InputIterator last,
                                           ForwardIterator result);
    template <class InputIterator, class Size, class ForwardIterator>
        ForwardIterator uninitialized_copy_n(InputIterator first, Size n,
                                             ForwardIterator result);
    template <class ForwardIterator, class T>
        void uninitialized_fill(ForwardIterator first, ForwardIterator last,
                                const T& x);
    template <class ForwardIterator, class Size, class T>
        ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
    // class template unique_ptr:
    template <class T> class default_delete;
    template <class T> class default_delete<T[]>;
    template <class T, class D = default_delete<T>> class unique_ptr;
    template <class T, class D> class unique_ptr<T[], D>;
 
    template <class T1, class D1, class T2, class D2>
        bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
    template <class T1, class D1, class T2, class D2>
        bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
    template <class T1, class D1, class T2, class D2>
        bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
    template <class T1, class D1, class T2, class D2>
        bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
    template <class T1, class D1, class T2, class D2>
        bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
    template <class T1, class D1, class T2, class D2>
        bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
 
    template <class T, class D>
        bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept;
    template <class T, class D>
        bool operator==(nullptr_t, const unique_ptr<T, D>& y) noexcept;
    template <class T, class D>
        bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept;
    template <class T, class D>
        bool operator!=(nullptr_t, const unique_ptr<T, D>& y) noexcept;
 
    template <class T, class D>
        bool operator<(const unique_ptr<T, D>& x, nullptr_t);
    template <class T, class D>
        bool operator<(nullptr_t, const unique_ptr<T, D>& y);
    template <class T, class D>
        bool operator<=(const unique_ptr<T, D>& x, nullptr_t);
    template <class T, class D>
        bool operator<=(nullptr_t, const unique_ptr<T, D>& y);
    template <class T, class D>
        bool operator>(const unique_ptr<T, D>& x, nullptr_t);
    template <class T, class D>
        bool operator>(nullptr_t, const unique_ptr<T, D>& y);
    template <class T, class D>
        bool operator>=(const unique_ptr<T, D>& x, nullptr_t);
    template <class T, class D>
        bool operator>=(nullptr_t, const unique_ptr<T, D>& y);
 
    // class bad_weak_ptr:
    class bad_weak_ptr;
 
    // class template shared_ptr:
    template<class T> class shared_ptr;
 
    // shared_ptr comparisons:
    template<class T, class U>
        bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept;
    template<class T, class U>
        bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept;
    template<class T, class U>
        bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept;
    template<class T, class U>
        bool operator>(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept;
    template<class T, class U>
        bool operator<=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept;
    template<class T, class U>
        bool operator>=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept;
 
    template <class T>
        bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept;
    template <class T>
        bool operator==(nullptr_t, const shared_ptr<T>& y) noexcept;
    template <class T>
        bool operator!=(const shared_ptr<T>& x, nullptr_t) noexcept;
    template <class T>
        bool operator!=(nullptr_t, const shared_ptr<T>& y) noexcept;
    template <class T>
        bool operator<(const shared_ptr<T>& x, nullptr_t) noexcept;
    template <class T>
        bool operator<(nullptr_t, const shared_ptr<T>& y) noexcept;
    template <class T>
        bool operator<=(const shared_ptr<T>& x, nullptr_t) noexcept;
    template <class T>
        bool operator<=(nullptr_t, const shared_ptr<T>& y) noexcept;
    template <class T>
        bool operator>(const shared_ptr<T>& x, nullptr_t) noexcept;
    template <class T>
    bool operator>(nullptr_t, const shared_ptr<T>& y) noexcept;
    template <class T>
        bool operator>=(const shared_ptr<T>& x, nullptr_t) noexcept;
    template <class T>
        bool operator>=(nullptr_t, const shared_ptr<T>& y) noexcept;
 
    // shared_ptr specialized algorithms:
    template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;
 
    // shared_ptr casts:
    template<class T, class U>
        shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r) noexcept;
    template<class T, class U>
        shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r) noexcept;
    template<class T, class U>
        shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r) noexcept;
 
    // shared_ptr get_deleter:
    template<class D, class T> D* get_deleter(shared_ptr<T> const& p) noexcept;
 
    // shared_ptr I/O:
    template<class E, class T, class Y>
        basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p);
 
    // class template weak_ptr:
    template<class T> class weak_ptr;
 
    // weak_ptr specialized algorithms:
    template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;
 
    // class template owner_less:
    template<class T> class owner_less;
 
    // class template enable_shared_from_this:
    template<class T> class enable_shared_from_this;
 
    // shared_ptr atomic access:
    template<class T>
        bool atomic_is_lock_free(const shared_ptr<T>* p);
    template<class T>
        shared_ptr<T> atomic_load(const shared_ptr<T>* p);
    template<class T>
        shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);
    template<class T>
        void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);
    template<class T>
        void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);
    template<class T>
        shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);
    template<class T>
        shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r,
                                                memory_order mo);
    template<class T>
        bool atomic_compare_exchange_weak(
            shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T>  w);
    template<class T>
        bool atomic_compare_exchange_strong(
            shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T>  w);
    template<class T>
        bool atomic_compare_exchange_weak_explicit(
            shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
            memory_order success, memory_order failure);
    template<class T>
        bool atomic_compare_exchange_strong_explicit(
            shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
            memory_order success, memory_order failure);
 
    //  hash support
    template <class T> struct hash;
    template <class T, class D> struct hash<unique_ptr<T, D> >;
    template <class T> struct hash<shared_ptr<T> >;
 
    // auto_ptr (deprecated)
    template <class X> class auto_ptr;
}