
Perl version 5.8.8 documentation - perltodo

Page 1http://perldoc.perl.org

NAME
perltodo - Perl TO-DO List

DESCRIPTION
This is a list of wishes for Perl. The tasks we think are smaller or easier
 are listed first. Anyone is
welcome to work on any of these, but it's a good
 idea to first contact perl5-porters@perl.org to avoid
duplication of
 effort. By all means contact a pumpking privately first if you prefer.

Whilst patches to make the list shorter are most welcome, ideas to add to
 the list are also
encouraged. Check the perl5-porters archives for past
 ideas, and any discussion about them. One set
of archives may be found at:

 http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/

What can we offer you in return? Fame, fortune, and everlasting glory? Maybe
 not, but if your patch is
incorporated, then we'll add your name to the AUTHORS file, which ships in the official distribution.
How many other
 programming languages offer you 1 line of immortality?

The roadmap to 5.10
The roadmap to 5.10 envisages feature based releases, as various items in this
 TODO are
completed.

Needed for a 5.9.4 release
Review assertions. Review syntax to combine assertions. Assertions could take
 advantage of
the lexical pragmas work. What hooks would assertions need?

Needed for a 5.9.5 release
*
 Implement _ prototype character

*
 Implement state variables

Needed for a 5.9.6 release
Stabilisation. If all goes well, this will be the equivalent of a 5.10-beta.

Tasks that only need Perl knowledge
common test code for timed bail out

Write portable self destruct code for tests to stop them burning CPU in
 infinite loops. This needs to
avoid using alarm, as some of the tests are
 testing alarm/sleep or timers.

POD -> HTML conversion in the core still sucks
Which is crazy given just how simple POD purports to be, and how simple HTML
 can be. It's not
actually as simple as it sounds, particularly with the
 flexibility POD allows for =item, but it would be
good to improve the
 visual appeal of the HTML generated, and to avoid it having any validation
 errors.
See also make HTML install work, as the layout of installation tree
 is needed to improve the
cross-linking.

The addition of Pod::Simple and its related modules may make this task
 easier to complete.

Parallel testing
The core regression test suite is getting ever more comprehensive, which has
 the side effect that it
takes longer to run. This isn't so good. Investigate
 whether it would be feasible to give the harness
script the option of
 running sets of tests in parallel. This would be useful for tests in t/op/*.t and
t/uni/*.t and maybe some sets of tests in lib/.

Questions to answer

1 How does screen layout work when you're running more than one test?

Perl version 5.8.8 documentation - perltodo

Page 2http://perldoc.perl.org

2 How does the caller of test specify how many tests to run in parallel?

3 How do setup/teardown tests identify themselves?

Pugs already does parallel testing - can their approach be re-used?

Make Schwern poorer
We should have for everything. When all the core's modules are tested,
 Schwern has promised to
donate to $500 to TPF. We may need volunteers to
 hold him upside down and shake vigorously in
order to actually extract the
 cash.

See t/lib/1_compile.t for the 3 remaining modules that need tests.

Improve the coverage of the core tests
Use Devel::Cover to ascertain the core's test coverage, then add tests that
 are currently missing.

test B
A full test suite for the B module would be nice.

A decent benchmark
perlbench seems impervious to any recent changes made to the perl core. It
 would be useful to
have a reasonable general benchmarking suite that roughly
 represented what current perl programs
do, and measurably reported whether
 tweaks to the core improve, degrade or don't really affect
performance, to
 guide people attempting to optimise the guts of perl. Gisle would welcome
 new tests
for perlbench.

fix tainting bugs
Fix the bugs revealed by running the test suite with the -t switch (via make test.taintwarn).

Dual life everything
As part of the "dists" plan, anything that doesn't belong in the smallest perl
 distribution needs to be
dual lifed. Anything else can be too. Figure out what
 changes would be needed to package that
module and its tests up for CPAN, and
 do so. Test it with older perl releases, and fix the problems you
find.

Improving threads::shared
Investigate whether threads::shared could share aggregates properly with
 only Perl level
changes to shared.pm

POSIX memory footprint
Ilya observed that use POSIX; eats memory like there's no tomorrow, and at
 various times worked to
cut it down. There is probably still fat to cut out -
 for example POSIX passes Exporter some very
memory hungry data structures.

Tasks that need a little sysadmin-type knowledge
Or if you prefer, tasks that you would learn from, and broaden your skills
 base...

Relocatable perl
The C level patches needed to create a relocatable perl binary are done, as
 is the work on Config.pm.
All that's left to do is the Configure tweaking
 to let people specify how they want to do the install.

make HTML install work
There is an installhtml target in the Makefile. It's marked as
 "experimental". It would be good to
get this tested, make it work reliably, and
 remove the "experimental" tag. This would include

1 Checking that cross linking between various parts of the documentation works.
 In particular

Perl version 5.8.8 documentation - perltodo

Page 3http://perldoc.perl.org

that links work between the modules (files with POD in lib/)
 and the core documentation (files
in pod/)

2 Work out how to split perlfunc into chunks, preferably one per function
 group, preferably
with general case code that could be used elsewhere.
 Challenges here are correctly
identifying the groups of functions that go
 together, and making the right named external
cross-links point to the right
 page. Things to be aware of are -X, groups such as getpwnam to
endservent, two or more =items giving the different parameter lists, such
 as

 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT

 =item substr EXPR,OFFSET,LENGTH

 =item substr EXPR,OFFSET

and different parameter lists having different meanings. (eg select)

compressed man pages
Be able to install them. This would probably need a configure test to see how
 the system does
compressed man pages (same directory/different directory?
 same filename/different filename), as well
as tweaking the installman script
 to compress as necessary.

Add a code coverage target to the Makefile
Make it easy for anyone to run Devel::Cover on the core's tests. The steps
 to do this manually are
roughly

do a normal Configure, but include Devel::Cover as a module to install
 (see INSTALL for
how to do this)

 make perl

 cd t; HARNESS_PERL_SWITCHES=-MDevel::Cover ./perl -I../lib
harness

Process the resulting Devel::Cover database

This just give you the coverage of the .pms. To also get the C level
 coverage you need to

Additionally tell Configure to use the appropriate C compiler flags for gcov

 make perl.gcov

(instead of make perl)

After running the tests run gcov to generate all the .gcov files.
 (Including down in the
subdirectories of ext/

(From the top level perl directory) run gcov2perl on all the .gcov files
 to get their stats into
the cover_db directory.

Then process the Devel::Cover database

It would be good to add a single switch to Configure to specify that you
 wanted to perform perl level
coverage, and another to specify C level
 coverage, and have Configure and the Makefile do all the
right things
 automatically.

Make Config.pm cope with differences between build and installed perl
Quite often vendors ship a perl binary compiled with their (pay-for)
 compilers. People install a free
compiler, such as gcc. To work out how to
 build extensions, Perl interrogates %Config, so in this

Perl version 5.8.8 documentation - perltodo

Page 4http://perldoc.perl.org

situation %Config describes compilers that aren't there, and extension building
 fails. This forces
people into choosing between re-compiling perl themselves
 using the compiler they have, or only
using modules that the vendor ships.

It would be good to find a way teach Config.pm about the installation setup,
 possibly involving
probing at install time or later, so that the %Config in
 a binary distribution better describes the
installed machine, when the
 installed machine differs from the build machine in some significant way.

make parallel builds work
Currently parallel builds (such as make -j3) don't work reliably. We believe
 that this is due to
incomplete dependency specification in the Makefile.
 It would be good if someone were able to track
down the causes of these
 problems, so that parallel builds worked properly.

linker specification files
Some platforms mandate that you provide a list of a shared library's external
 symbols to the linker, so
the core already has the infrastructure in place to
 do this for generating shared perl libraries. My
understanding is that the
 GNU toolchain can accept an optional linker specification file, and restrict

visibility just to symbols declared in that file. It would be good to extend makedef.pl to support this
format, and to provide a means within Configure to enable it. This would allow Unix users to test
that the
 export list is correct, and to build a perl that does not pollute the global
 namespace with
private symbols.

Tasks that need a little C knowledge
These tasks would need a little C knowledge, but don't need any specific
 background or experience
with XS, or how the Perl interpreter works

Make it clear from -v if this is the exact official release
Currently perl from p4/rsync ships with a patchlevel.h file that
 usually defines one local patch, of the
form "MAINT12345" or "RC1". The output
 of perl -v doesn't report that a perl isn't an official release,
and this
 information can get lost in bugs reports. Because of this, the minor version
 isn't bumped up
until RC time, to minimise the possibility of versions of perl
 escaping that believe themselves to be
newer than they actually are.

It would be useful to find an elegant way to have the "this is an interim
 maintenance release" or "this
is a release candidate" in the terse -v output,
 and have it so that it's easy for the pumpking to remove
this just as the
 release tarball is rolled up. This way the version pulled out of rsync would
 always say
"I'm a development release" and it would be safe to bump the
 reported minor version as soon as a
release ships, which would aid perl
 developers.

This task is really about thinking of an elegant way to arrange the C source
 such that it's trivial for the
Pumpking to flag "this is an official release"
 when making a tarball, yet leave the default source saying
"I'm not the
 official release".

Tidy up global variables
There's a note in intrpvar.h

 /* These two variables are needed to preserve 5.8.x bincompat because
 we can't change function prototypes of two exported functions.
 Probably should be taken out of blead soon, and relevant prototypes
 changed. */

So doing this, and removing any of the unused variables still present would
 be good.

Ordering of "global" variables.
thrdvar.h and intrpvarh define the "global" variables that need to be
 per-thread under ithreads, where
the variables are actually elements in a
 structure. As C dictates, the variables must be laid out in
order of
 declaration. There is a comment /* Important ones in the first cache line

Perl version 5.8.8 documentation - perltodo

Page 5http://perldoc.perl.org

(if alignment is done right) */
 which implies that at some point in the past the ordering
was carefully chosen
 (at least in part). However, it's clear that the ordering is less than perfect,
 as
currently there are things such as 7 bools in a row, then something
 typically requiring 4 byte
alignment, and then an odd bool later on.
 (bools are typically defined as chars). So it would be
good for someone
 to review the ordering of the variables, to see how much alignment padding can
 be
removed.

bincompat functions
There are lots of functions which are retained for binary compatibility.
 Clean these up. Move them to
mathom.c, and don't compile for blead?

am I hot or not?
The idea of pp_hot.c is that it contains the hot ops, the ops that are
 most commonly used. The idea is
that by grouping them, their object code will
 be adjacent in the executable, so they have a greater
chance of already being
 in the CPU cache (or swapped in) due to being near another op already in
use.

Except that it's not clear if these really are the most commonly used ops. So
 anyone feeling like
exercising their skill with coverage and profiling tools
 might want to determine what ops really are the
most commonly used. And in
 turn suggest evictions and promotions to achieve a better pp_hot.c.

emulate the per-thread memory pool on Unix
For Windows, ithreads allocates memory for each thread from a separate pool,
 which it discards at
thread exit. It also checks that memory is free()d to
 the correct pool. Neither check is done on Unix, so
code developed there won't
 be subject to such strictures, so can harbour bugs that only show up
when the
 code reaches Windows.

It would be good to be able to optionally emulate the Window pool system on
 Unix, to let developers
who only have access to Unix, or want to use
 Unix-specific debugging tools, check for these
problems. To do this would
 involve figuring out how the PerlMem_* macros wrap malloc() access,
and
 providing a layer that records/checks the identity of the thread making the
 call, and recording all
the memory allocated by each thread via this API so
 that it can be summarily free()d at thread exit.
One implementation idea
 would be to increase the size of allocation, and store the my_perl pointer

(to identify the thread) at the start, along with pointers to make a linked
 list of blocks for this thread. To
avoid alignment problems it would be
 necessary to do something like

 union memory_header_padded {
 struct memory_header {
 void *thread_id; /* For my_perl */
 void *next; /* Pointer to next block for this thread */
 } data;
 long double padding; /* whatever type has maximal alignment constraint
*/
 };

although long double might not be the only type to add to the padding
 union.

reduce duplication in sv_setsv_flags
Perl_sv_setsv_flags has a comment /* There's a lot of redundancy below but
we're going for speed here */

Whilst this was true 10 years ago, the growing disparity between RAM and CPU
 speeds mean that
the trade offs have changed. In addition, the duplicate code
 adds to the maintenance burden. It would
be good to see how much of the
 redundancy can be pruned, particular in the less common paths.
(Profiling
 tools at the ready...). For example, why does the test for
 "Can't redefine active sort
subroutine" need to occur in two places?

Perl version 5.8.8 documentation - perltodo

Page 6http://perldoc.perl.org

Tasks that need a knowledge of XS
These tasks would need C knowledge, and roughly the level of knowledge of
 the perl API that comes
from writing modules that use XS to interface to
 C.

IPv6
Clean this up. Check everything in core works

shrink GVs, CVs
By removing unused elements and careful re-ordering, the structures for AVs
 and HVs have recently
been shrunk considerably. It's probable that the same
 approach would find savings in GVs and CVs, if
not all the other
 larger-than-PVMG types.

merge Perl_sv_2[inpu]v
There's a lot of code shared between Perl_sv_2iv_flags, Perl_sv_2uv_flags, Perl_sv_2nv,
and Perl_sv_2pv_flags. It would be
 interesting to see if some of it can be merged into common
shared static
 functions. In particular, Perl_sv_2uv_flags started out as a cut&paste
 from
Perl_sv_2iv_flags around 5.005_50 time, and it may be possible to
 replace both with a single
function that returns a value or union which is
 split out by the macros in sv.h

UTF8 caching code
The string position/offset cache is not optional. It should be.

Implicit Latin 1 => Unicode translation
Conversions from byte strings to UTF-8 currently map high bit characters
 to Unicode without
translation (or, depending on how you look at it, by
 implicitly assuming that the byte strings are in
Latin-1). As perl assumes
 the C locale by default, upgrading a string to UTF-8 may change the

meaning of its contents regarding character classes, case mapping, etc.
 This should probably emit a
warning (at least).

This task is incremental - even a little bit of work on it will help.

autovivification
Make all autovivification consistent w.r.t LVALUE/RVALUE and strict/no strict;

This task is incremental - even a little bit of work on it will help.

Unicode in Filenames
chdir, chmod, chown, chroot, exec, glob, link, lstat, mkdir, open,
 opendir, qx, readdir, readlink,
rename, rmdir, stat, symlink, sysopen,
 system, truncate, unlink, utime, -X. All these could potentially
accept
 Unicode filenames either as input or output (and in the case of system
 and qx Unicode in
general, as input or output to/from the shell).
 Whether a filesystem - an operating system pair
understands Unicode in
 filenames varies.

Known combinations that have some level of understanding include
 Microsoft NTFS, Apple HFS+ (In
Mac OS 9 and X) and Apple UFS (in Mac
 OS X), NFS v4 is rumored to be Unicode, and of course
Plan 9. How to
 create Unicode filenames, what forms of Unicode are accepted and used
 (UCS-2,
UTF-16, UTF-8), what (if any) is the normalization form used,
 and so on, varies. Finding the right level
of interfacing to Perl
 requires some thought. Remember that an OS does not implicate a
 filesystem.

(The Windows -C command flag "wide API support" has been at least
 temporarily retired in 5.8.1, and
the -C has been repurposed, see perlrun.)

Unicode in %ENV
Currently the %ENV entries are always byte strings.

Perl version 5.8.8 documentation - perltodo

Page 7http://perldoc.perl.org

use less 'memory'
Investigate trade offs to switch out perl's choices on memory usage.
 Particularly perl should be able to
give memory back.

This task is incremental - even a little bit of work on it will help.

Re-implement :unique in a way that is actually thread-safe
The old implementation made bad assumptions on several levels. A good 90%
 solution might be just
to make :unique work to share the string buffer
 of SvPVs. That way large constant strings can be
shared between ithreads,
 such as the configuration information in Config.

Make tainting consistent
Tainting would be easier to use if it didn't take documented shortcuts and
 allow taint to "leak"
everywhere within an expression.

readpipe(LIST)
system() accepts a LIST syntax (and a PROGRAM LIST syntax) to avoid
 running a shell. readpipe()
(the function behind qx//) could be similarly
 extended.

Tasks that need a knowledge of the interpreter
These tasks would need C knowledge, and knowledge of how the interpreter works,
 or a willingness
to learn.

lexical pragmas
Document the new support for lexical pragmas in 5.9.3 and how %^H works.
 Maybe re, encoding,
maybe other pragmas could be made lexical.

Attach/detach debugger from running program
The old perltodo notes "With gdb, you can attach the debugger to a running
 program if you pass the
process ID. It would be good to do this with the Perl
 debugger on a running Perl program, although
I'm not sure how it would be
 done." ssh and screen do this with named pipes in /tmp. Maybe we can
too.

Constant folding
The peephole optimiser should trap errors during constant folding, and give
 up on the folding, rather
than bailing out at compile time. It is quite
 possible that the unfoldable constant is in unreachable
code, eg something
 akin to $a = 0/0 if 0;

LVALUE functions for lists
The old perltodo notes that lvalue functions don't work for list or hash
 slices. This would be good to
fix.

LVALUE functions in the debugger
The old perltodo notes that lvalue functions don't work in the debugger. This
 would be good to fix.

_ prototype character
Study the possibility of adding a new prototype character, _, meaning
 "this argument defaults to $_".

state variables
my $foo if 0; is deprecated, and should be replaced with state $x = "initial value\n";
the syntax from Perl 6.

@INC source filter to Filter::Simple
The second return value from a sub in @INC can be a source filter. This isn't
 documented. It should
be changed to use Filter::Simple, tested and documented.

Perl version 5.8.8 documentation - perltodo

Page 8http://perldoc.perl.org

regexp optimiser optional
The regexp optimiser is not optional. It should configurable to be, to allow
 its performance to be
measured, and its bugs to be easily demonstrated.

UNITCHECK
Introduce a new special block, UNITCHECK, which is run at the end of a
 compilation unit (module,
file, eval(STRING) block). This will correspond to
 the Perl 6 CHECK. Perl 5's CHECK cannot be
changed or removed because the
 O.pm/B.pm backend framework depends on it.

optional optimizer
Make the peephole optimizer optional. Currently it performs two tasks as
 it walks the optree - genuine
peephole optimisations, and necessary fixups of
 ops. It would be good to find an efficient way to
switch out the
 optimisations whilst keeping the fixups.

You WANT *how* many
Currently contexts are void, scalar and list. split has a special mechanism in
 place to pass in the
number of return values wanted. It would be useful to
 have a general mechanism for this, backwards
compatible and little speed hit.
 This would allow proposals such as short circuiting sort to be
implemented
 as a module on CPAN.

lexical aliases
Allow lexical aliases (maybe via the syntax my \$alias = \$foo.

entersub XS vs Perl
At the moment pp_entersub is huge, and has code to deal with entering both
 perl and XS subroutines.
Subroutine implementations rarely change between perl and XS at run time, so investigate using 2
ops to enter subs (one for
 XS, one for perl) and swap between if a sub is redefined.

Self ties
self ties are currently illegal because they caused too many segfaults. Maybe
 the causes of these
could be tracked down and self-ties on all types re-
 instated.

Optimize away @_
The old perltodo notes "Look at the "reification" code in av.c".

What hooks would assertions need?
Assertions are in the core, and work. However, assertions needed to be added
 as a core patch, rather
than an XS module in ext, or a CPAN module, because
 the core has no hooks in the necessary
places. It would be useful to
 investigate what hooks would need to be added to make it possible to
provide
 the full assertion support from a CPAN module, so that we aren't constraining
 the imagination
of future CPAN authors.

Big projects
Tasks that will get your name mentioned in the description of the "Highlights
 of 5.10"

make ithreads more robust
Generally make ithreads more robust. See also iCOW

This task is incremental - even a little bit of work on it will help, and
 will be greatly appreciated.

iCOW
Sarathy and Arthur have a proposal for an improved Copy On Write which
 specifically will be able to
COW new ithreads. If this can be implemented
 it would be a good thing.

Perl version 5.8.8 documentation - perltodo

Page 9http://perldoc.perl.org

(?{...}) closures in regexps
Fix (or rewrite) the implementation of the /(?{...})/ closures.

A re-entrant regexp engine
This will allow the use of a regex from inside (?{ }), (??{ }) and
 (?(?{ })|) constructs.

