@ Pefl Perl version 5.8.8 documentation - SelfLoader

NAME

SelfLoader - load functions only on demand

SYNOPSIS
package FOOBAR;
use SelflLoader;
... (initializing code)
__DATA__
sub {....
DESCRIPTION

This module tells its users that functions in the FOOBAR package are to be autoloaded from after the
___DATA __ token. See also "Autoloading" in perlsub.

The _ DATA__ token

The _ DATA __ token tells the perl compiler that the perl code for compilation is finished. Everything
after the _ DATA__ token is available for reading via the filehandle FOOBAR::DATA, where FOOBAR
is the name of the current package when the _ DATA __ token is reached. This works just the same
as ___END__ does in package 'main’, but for other modules data after _ END___is not automatically
retrievable, whereas data after _ DATA___is. The _ DATA__ token is not recognized in versions of
perl prior to 5.001m.

Note that it is possible to have _ DATA__ tokens in the same package in multiple files, and that the
last __DATA__ token in a given package that is encountered by the compiler is the one accessible by
the filehandle. This also appliesto __END___and main, i.e. if the 'main’' program has an __END__, but
a module ‘require'd (_not_ 'use'd) by that program has a 'package main;' declaration followed by an'
___DATA__ ', then the DATA filehandle is set to access the data after the _ DATA ___ in the module,
not the data after the _ END___ token in the 'main’ program, since the compiler encounters the
'require'd file later.

SelfLoader autoloading

The SelfLoader works by the user placing the __ DATA___ token after perl code which needs to be
compiled and run at 'require' time, but before subroutine declarations that can be loaded in later -
usually because they may never be called.

The SelfLoader will read from the FOOBAR::DATA filehandle to load in the data after _ DATA__,
and load in any subroutine when it is called. The costs are the one-time parsing of the data after
__DATA _, and aload delay for the _first_call of any autoloaded function. The benefits (hopefully)
are a speeded up compilation phase, with no need to load functions which are never used.

The SelfLoader will stop reading from __ DATA__ if it encountersthe _ END _ token - just as you
would expect. Ifthe _ END__ token is present, and is followed by the token DATA, then the
SelfLoader leaves the FOOBAR::DATA filehandle open on the line after that token.

The SelfLoader exports the AUTOLOAD subroutine to the package using the SelfLoader, and this
loads the called subroutine when it is first called.

There is no advantage to putting subroutines which will _always_ be called after the _ DATA__ token.

Autoloading and package lexicals

A 'my $pack_lexical' statement makes the variable $pack_lexical local _only to the file up to the
__ DATA __ token. Subroutines declared elsewhere _cannot_ see these types of variables, just as if
you declared subroutines in the package but in another file, they cannot see these variables.

http://perldoc.perl.org Page 1

@ Pefl Perl version 5.8.8 documentation - SelfLoader

So specifically, autoloaded functions cannot see package lexicals (this applies to both the SelfLoader
and the Autoloader). The vars pragma provides an alternative to defining package-level globals that
will be visible to autoloaded routines. See the documentation on vars in the pragma section of
perimod.

SelfLoader and AutolLoader

The SelfLoader can replace the AutoLoader - just change 'use AutoLoader' to 'use SelfLoader'
(though note that the SelfLoader exports the AUTOLOAD function - but if you have your own
AUTOLOAD and are using the AutoLoader too, you probably know what you're doing), and the
__END__ tokento__ DATA__. You will need perl version 5.001m or later to use this (version 5.001
with all patches up to patch m).

There is no need to inherit from the SelfLoader.

The SelfLoader works similarly to the AutoLoader, but picks up the subs from after the _ DATA___
instead of in the 'lib/auto’ directory. There is a maintenance gain in not needing to run AutoSplit on the
module at installation, and a runtime gain in not needing to keep opening and closing files to load
subs. There is a runtime loss in needing to parse the code after the _ DATA__ . Details of the
AutoLoader and another view of these distinctions can be found in that module's documentation.

__DATA__,__END__, and the FOOBAR::DATA filehandle.
This section is only relevant if you want to use the FOOBAR : - DATA together with the SelfLoader.

Data after the _ DATA__ token in a module is read using the FOOBAR::DATA filehandle. _ END___
can still be used to denote the end of the _ DATA __ section if followed by the token DATA - this is
supported by the SelfLoader. The FOOBAR: : DATA filehandle is left open if an _ END__ followed by a
DATA is found, with the filehandle positioned at the start of the line after the _ END__ token. If no

__ END__ tokenis present, or an __END__ token with no DATA token on the same line, then the
filehandle is closed.

The SelfLoader reads from wherever the current position of the FOOBAR : : DATA filehandle is, until
the EOF or __END__ . This means that if you want to use that filehandle (and ONLY if you want to),
you should either

1. Put all your subroutine declarations immediately after the _ DATA___ token and put your own data
after those declarations, using the __ END___ token to mark the end of subroutine declarations. You
must also ensure that the SelfLoader reads first by calling 'SelfLoader->load_stubs();', or by using a
function which is selfloaded;

or

2. You should read the FOOBAR: : DATA filehandle first, leaving the handle open and positioned at the
first line of subroutine declarations.

You could conceivably do both.

Classes and inherited methods.

For modules which are not classes, this section is not relevant. This section is only relevant if you
have methods which could be inherited.

A subroutine stub (or forward declaration) looks like

sub stub;
i.e. it is a subroutine declaration without the body of the subroutine. For modules which are not
classes, there is no real need for stubs as far as autoloading is concerned.

For modules which ARE classes, and need to handle inherited methods, stubs are needed to ensure
that the method inheritance mechanism works properly. You can load the stubs into the module at

http://perldoc.perl.org Page 2

@ Pefl Perl version 5.8.8 documentation - SelfLoader

'require’ time, by adding the statement 'SelfLoader->load_stubs();' to the module to do this.

The alternative is to put the stubs in before the _ DATA _ token BEFORE releasing the module, and
for this purpose the Devel : : Sel fStubber module is available. However this does require the extra
step of ensuring that the stubs are in the module. If this is done | strongly recommend that this is done
BEFORE releasing the module - it should NOT be done at install time in general.

Multiple packages and fully qualified subroutine names

Subroutines in multiple packages within the same file are supported - but you should note that this
requires exporting the SelfLoader : : AUTOLOAD to every package which requires it. This is done
automatically by the SelfLoader when it first loads the subs into the cache, but you should really
specify it in the initialization before the _ DATA___ by putting a 'use SelfLoader' statement in each
package.

Fully qualified subroutine names are also supported. For example,

__DATA__

sub foo::bar {23}
package baz;

sub dob {32}

will all be loaded correctly by the SelfLoader, and the SelfLoader will ensure that the packages 'foo’
and 'baz' correctly have the SelfLoader AUTOLOAD method when the data after _ DATA___is first
parsed.

http://perldoc.perl.org Page 3

